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Abstract 

 This work presents a built, tested, and demonstrated test structure that is low-cost, 

flexible, and re-usable for robust radiation experimentation, primarily to investigate 

memory, in this case SRAMs and SRAM-based FPGAs.   

The space environment can induce many kinds of failures due to radiation effects. 

These failures result in a loss of money, time, intelligence, and information.  In order to 

evaluate technologies for potential failures, a detailed test methodology and associated 

structure are required.  In this solution, an FPGA board was used as the controller 

platform, with multiple VHDL circuit controllers, data collection and reporting modules.  

The structure was demonstrated by programming an SRAM-based FPGA board as the 

device under test (DUT) with various types of adders, counters and RAM modules.  The 

controllers, hardware, and data collection operations were tested and validated using 

gamma radiation from a Co-60 source at the Ohio State University Nuclear Reactor to 

irradiate the DUT.   

The test structure is easily modified to allow for a broad range of experiments on 

the same DUT.  In addition, this structure is easily adaptable for other memory types, 

such as DRAM, FlashRam, and MRAM.  These additions will be discussed further in this 

document.  The system fits in a backpack and costs less than $1000.
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HARDWARE, SOFTWARE AND DATA ANALYSIS TECHNIQUES FOR SRAM-
BASED FIELD PROGRAMMABLE GATE ARRAY CIRCUITS 

 
 

I. Introduction 

Failure of space assets can have high costs in terms of intelligence, 

communications, money and lives.  The use of SRAM-based FPGAs is becoming more 

widespread since they are re-programmable, low-cost, and more versatile.  With this 

motivation in mind, it naturally leads to the problem that there needs to be a methodology 

to evaluate these devices for potential failure modes and weak points in the physical 

structure of the circuit.  Further, a test structure is required that can adequately implement 

this methodology to successfully determine weak points within these FPGAs that can be 

taken into account during the design phase of development.  The solution proposed in this 

work is a combination of hardware and software that researchers can use to isolate areas 

of FPGAs, and potentially other memory devices like SRAM, MRAM, FlashRam, etc.   

There is a need to develop a robust, re-usable, and stable test methodology for 

various types of memory technologies.  Field Programmable Gate Arrays (FPGAs) can 

come in several varieties such as Static Random Access Memory (SRAM)-based and 

anti-fuse-based, use varying layers of metal, and low-power to name but a few.  The type 

under investigation in this work based on SRAM.  Further, once a methodology is 

established it must be implemented in a test platform.  Preferably this platform would be 

easily adaptable to other memory technologies and applications that can employ a similar 

methodology. 
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Radiation experiments have been conducted on various memory technologies and 

circuits for decades.  SRAM-based FPGAs have many advantages, as they are easily re-

programmable, can allow for many design iterations in a short amount of time, and can 

be modified at any time after programming in the field by simply reloading a new 

bitstream.  In recent years the use of FPGAs in space electronics has become significant 

due to their low cost and ability to be re-programmed to fix errors, or even add new 

functions and capabilities while in the field.  This has important implications, since 

failures in these systems can cost millions of dollars, loss of communication capability, 

loss of intelligence, and in the worst case, cost lives.   

An FPGA is comprised of many elements including switch blocks, SRAM cells, 

look up tables (LUTs), multiplexers, flip-flops, buffers, adders, and various other 

elements [6,7].  The transistors that make up these elements can vary in size, with some 

being larger or smaller leading to a variety of potential radiation effects.  For example, 

the Virtex-4 FPGA has thirteen different transistor sizes, with three different thicknesses 

of gate oxide [23]. 

 Many of these effects under investigation have relevance in more than just the 

space environment.  Due to decreasing feature size, thinner oxides, higher packing 

density, and lower power supply voltages in next generation ICs, many of the effects that 

have previously been observed and studied in space systems will become more prevalent 

in terrestrial computer systems and circuits.  Radiation effects can vary greatly, leading to 

completely different failure modes in different radiation environments.    
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Further complicating analysis is that transistors with gate oxides thicker than 20 

nm [1], are typically susceptible to radiation-induced oxide and interface traps while 

those with thinner oxides are more susceptible to gate leakage and rupture [1].  All 

transistors can be susceptible to single event transients (SETs), which can become a 

single-event upset (SEU) and manifest themselves as logic errors. The Xilinx Virtex-4 

FPGA is comprised of transistors that fall into both categories, making it uncertain which 

effect has the greatest consequence, and more importantly which region is the most 

susceptible to radiation and causes failure. 

 There are several techniques to mitigating the effects of radiation.  These are 

investigated and discussed further in Chapters 2 and 3, in order to analyze a robust, 

programmable test setup for isolating the primary radiation failure mechanism in an 

FPGA.  This single hardware setup can be used to experimentally investigate dozens of 

distinct effects in numerous modes and configurations.  Radiation experiments need to be 

highly tuned and carefully planned to appropriately measure the feature of interest; for 

instance the clock (period, frequency, skew, rise-time, and fall-time), logic blocks, SEUs, 

latch-up, and a host of others.  The test structure presented here is easily tunable to look 

for a variety of effects by modifying parameters in a centralized location.  In many cases 

experimenters may want to test different chips from the same manufacturer, across 

multiple manufactures, across technology generations, etc.   This test setup can provide 

for a common baseline and repeatability of experiments across multiple types of 

hardware.  Test control, stimulus control, and data collection are additional variables that 

can be introduced.   These variables make it hard to distinguish between real differences 
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and simply something the test setup influenced or reported differently or not at all.  

Standardizing the data collection parameters across various technologies and devices 

makes data analysis much less intensive and should result in better analysis overall.       

One of the problems that researchers face in experimentation is that too often they 

must spend a majority of their time building a test setup that targets their specific project 

or chip, and not enough time organizing, conducting, and analyzing experiments to make 

useful contributions.  With this structure, six months or more of labor and time are 

mitigated that can be re-directed to the real task, accomplishing experiments and doing 

data analysis.    

This work demonstrates the viability of this setup, as well as presents results of its 

use in an experiment at a reactor facility.  The code generated can easily be tuned to 

allow for a wide range of experiments that can provide a wealth of data.  The tunable 

parameters include; clock frequency, clock pulse width, write frequency, read frequency, 

and perhaps most importantly, the data collection parameters.  The capability of the setup 

is proven using a variety of adder, counter, and BlockRam modules.  This work will 

mitigate six months or more of effort for researchers and provide a consistent 

experimental baseline to remove variability from test-to-test and device-to-device.  This 

time can be re-directed to parameter setup, experimentation, and analysis. 
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II. Literature Review 

2.1 Chapter Overview 

This chapter will summarize the applicable literature regarding radiation effects 

on electronics, SRAM and FPGA function, FPGA vulnerabilities, and radiation 

hardening techniques for circuits and memories important to this work. This requires a 

background in normal operation of NMOS and PMOS transistors and the function of the 

SRAM cells that comprise the FPGAs as discussed in the following sections.  Finally, 

radiation impacts on transistors and circuits, as well as various hardening techniques at 

the process and design levels will be discussed. 

2.2 Normal transistor operation 

A transistor can be thought of as a switch that either goes to ground or allows 

voltage to pass in order to transfer logic 0 or 1 respectively.  It acts as a switch through 

application of a positive voltage to turn on an NMOS, or a negative voltage to turn on a 

PMOS.   

Typically for an NMOS, the substrate and source is connected to ground.  When a 

positive voltage greater than zero but less than the threshold voltage is applied to the gate, 

holes are pushed away from the interface between the substrate and the gate oxide 

creating a depletion region.  As the voltage approaches the threshold voltage, electrons 

accumulate in the channel.  This creates a conducting path for charge to flow through the 

channel.  The speed with which the switch functions is dictated by channel length and 
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width, oxide thickness, gate insulator dielectric constant, carrier mobility, and threshold 

voltage (obtained from the threshold voltage equations) among others. 

2.3 SRAM Function 

Static Random Access Memory (SRAM) is a type of memory that retains its value  

without the need to refresh as long as power is applied to the cell.  Once the value  

 

 

Figure 1: Basic Six-transistor SRAM cell.  Two cross-coupled inverters keep the 

data stored as long as power is applied to the cell [22].  In the text, BL’ is used to 

represent      . 

 

is written to the cell, it is passed back and forth between two cross-coupled inverters, or  

where one inverter’s output feeds the other inverter’s input thereby retaining the value.  

SRAM is more expensive than Dynamic Random Access Memory (DRAM), but has 

several advantages.  SRAM is faster, uses less power, and simpler to interface with since 

___ 
BL 
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the refresh interrupt logic is not required in order to retain the written value.  The SRAM 

cell retains its value without refresh as long as power is applied to the system. 

The basic SRAM memory cell consists of a minimum six transistors.  Figure 1 

shows the basic design, demonstrating two cross-coupled inverters that pass the value 

back and forth until the control lines are set to read from or write to it.  By being cross-

coupled, one inverter’s output feeds the other inverter’s input and vice-versa.  Two other 

NMOS transistors control access to the cell when reading and writing.  There are three 

modes of operation: read, write, and standby.  To understand the operation, suppose a 

logic 1 was stored in the cell.  First, the bit lines, BL and BL’ are set high.  On the 

following cycle, the WL line is set to 1 to allow the control transistors to latch the proper 

value.  Reading a 0 results in setting the lines in the opposite manner.    

During a write operation, the bit lines are loaded first.  In the case of writing a 1, 

BL would have a 1 applied while a 0 would be applied to BL’.  On the following timing 

pulse, WL is asserted which latches the data into the cell itself.  The transistors are sized 

such that the values being latched by the bit lines are much stronger than the weaker 

voltage signals in the cell, enabling the value that is currently stored there to be 

overwritten [22].   

 During standby, the bit lines are disconnected from the internal cell.  As long as 

power is applied, the value currently stored will simply be passed back and forth 

indefinitely. 
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2.4 FPGA Basics 

SRAM-based FPGAs comprise a more significant portion of space system 

electronics every year.  FPGAs are a flexible alternative to Application Specific 

Integrated Circuits (ASICs).  ASICs typically yield faster, smaller, and lower power 

design than FPGAs.  However an FPGA can be reconfigured to employ numerous circuit 

structures and logics.  Instead of making a specific chip layout that meets a single 

requirement, software can use code that describes a vast variety of functions and 

applications and implement it using mapping technology in the FPGA.   

There are distinct advantages to designing a system using FPGAs vice ASICs.  

These include quicker turn around times bypassing fabrication time, and requiring less 

time to test the circuit.  In addition, a mask for a complicated ASIC can cost more than 

$1M, meaning that if a change is required due to a logic error after the mask had been 

completed, a completely new set would have to be manufactured at a significant cost.  Inc 

contrast, an FPGA can be reconfigured quickly for a very low cost. 

 

Figure 2: Basic Logic Element of an FPGA.  The Basic Logic Element (BLE) is 

comprised of a look-up-table (LUT), Flip Flop (FF), and multiplexer (MUX) 

 

FPGAs are made up of combinational logic blocks (CLBs) that are made of basic 

elements.  These include look-up tables (LUTs), multiplexers, and flip-flops.  In addition, 
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there is routing logic, pass transistors, and I/O pads.  The CLB can implement any 

Boolean function of its inputs.  The CLBs can be linked together via routing blocks to 

further implement more complex logic.  A CLB with more inputs can implement more 

logic with fewer logic blocks.  However, according to [6], the LUT complexity grows 

exponentially with the number of inputs.   

The BLE has a D flip-flop to store the output from the LUT.  The FF works with 

the LUT to form sequential circuits.  A gated clock is used to keep power consumption 

low since unwanted FF transitions use additional power.  The final element in the BLE is 

a multiplexer (MUX) that chooses between the LUT output and FF output to send to the 

routing network.  

A fully connected FPGA is one in which every logic block can communicate with 

every other block.  This configuration allows for very high logic utilization and 

flexibility, but routing between the blocks becomes extremely complex.  In addition, the 

power dissipation from the wiring becomes the majority power dissipation mechanism, 

which is wasteful.  Delays can also result as signals may have to travel back-and-forth to 

get to the appropriate logic block for additional processing.  In order to address this issue, 

most FPGAs use an island cluster configuration that clusters CLBs into groups, to allow 

for greater processing and logic utilization while optimizing routing, power consumption, 

and delay.  Figure 3 shows this configuration. 
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Figure 3: An island style FPGA.   Local logic blocks are connected together for more 

complex processing [1] 

2.5 FPGA Configuration Bitstream 

 The configuration bitstream determines how the SRAM switches are set when the 

FPGA is programmed.  A fault here can cause the FPGA to operate incorrectly since the 

hardware is programmed incorrectly.  The error or errors will continue until the bitstream 

is re-programmed correct configuration.   

The normal flow for programming an FPGA starts with writing a file in VHSIC 

Hardware Description Language (VHDL).  A software program called the synthesizer 

then converts that code to a hardware equivalent latching configuration, which is then 

mapped onto the FPGA.  Finally the bitstream is downloaded to the device.  These 

configuration bits determine the location of every structure on the device such as MUXes, 

LUTs, etc.  If one of these bits is impacted, it will result in incorrect function until that 

portion of the bitstream is re-loaded. 
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2.6 Power MOSFETs 

Until recently, bi-polar junction transistors (BJTs) were the power transfer device 

of choice.  However, problems arose in that a base current up to 1/5 of the collector 

current was required to keep the device turned on [15], and a large reverse base current 

was required for fast turn-off.  Power MOSFETs were invented to deal with this issue.  

Power MOSFETs use most of the same processing techniques as typical MOSFETs used 

in VLSI applications, but there are significant differences in the geometry, voltage, and 

currents.  Figure 4 shows a diagram of a typical power MOSFET. 

 

 

Figure 4: Power MOSFET Layout [15] 

 

The power MOSFET provides another source for radiation sensitivity that can result in 

permanent failure of the device.  If the power MOSFET fails, power is removed from the 

board and the entire configuration is lost.  If the device has a hard failure, the FPGA will 

not be programmable anymore. 
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2.7 Radiation Background 

Table 1 [17] summarizes the various types of particles in the space environment.  

These include gammas (or photons), electrons, neutrons, protons, alphas (He+ ions), 

heavy ions such as iron, and galactic cosmic rays.  Depending on the orbit or location in 

space, time of day, solar activity, and terrestrial location, different particles become the 

radiation of interest. 

Table 1 - Summary of Radiation Types with Primary and Secondary Effects [17] 

 

Photons travel at the speed of light, while velocities can vary significantly from a few 

meters per second up to close to the speed of light for particles with mass.  Further 

discussion will be limited to gamma interactions, since that is the validation method used 

for this work. 

 Gammas have no mass or charge, and as such do not directly interact cause 

radiation effects.  The photoelectric effect, Comption scattering, and pair production [17] 

Category Particle 
Mass 
(Kg) Charge Ionizing 

Non-
Ionizing 

Photons x-ray n/a n/a Primary & Secondary 
    Secondary  
 Gamma n/a n/a Primary & Secondary 
    Secondary  
Charged 
Particles Electrons 9.11x10-31 -q 

Energy 
Dependent 

Energy 
Dependent 

 Protons 1.67x10-27 +q 
Energy 
Dependent 

Energy 
Dependent 

 Alphas 6.64x10-27 +2q 
Energy 
Dependent 

Energy 
Dependent 

 
Heavy 
Ions 

Z 
Dependent 

Z 
Dependent Primary Secondary 

Uncharged 
Particles Neutrons 1.68x10-27 n/a Secondary Primary 
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are all mechanisms that result in energetic free electrons.  These electrons then impact the 

various circuit structures, causing the radiation effects of concern. 

2.8 Radiation Effects on Transistors 

 There are a number of effects that radiation has on transistors.  These include 

latchup, parasitic thyristor, oxide and interface trapping, threshold voltage shifts, gate 

leakage, displacement damage, transient upsets, and gate rupture.  Each of these will be 

discussed briefly to explain the effect. 

 Latch-up is a high current, low voltage condition, where a p-n-p-n parasitic 

structure can create two self-feeding bi-polar junction transistors (BJTs).  Normally, both 

parasitic transistors are turned off.  However, ionizing radiation can cause avalanche 

breakdown, and use positive feedback to draw current to the point where the device 

won’t function, and eventually lead to burning out the circuit.  There are a few methods 

of dealing with latch-up, with the most common being to cycle power so that the positive 

feedback loop is broken.  Another method can be to reduce the minority carrier mobility 

using neutron injection, but this is typically not practical in a functional circuit.  A more 

common manufacturing method involves using Silicon-on-Insulator fabrication 

techniques.  This effectively decouples the two side-by-side MOSFETs by inserting an 

insulator between them, eliminating the possibility of the parasitic p-n-p-n structure. 

2.9 Vulnerabilities of SRAM 

 The basic SRAM cell is comprised of two, cross-coupled inverters that constantly 

pass the value stored back and forth.  The transistors are thus “switching” at their 
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maximum frequency at all times during operation, limited only by the physical properties 

of the silicon.  The sensitive nodes of a memory cell are typically the drains of the off-

state transistors.  When a charged particle strikes one of these nodes, the gate of the 

opposing transistor can be turned on, producing a bit flip.  During normal cell operation, 

two transistors are always turned on to store either the 0 or 1. 

 Another effect is called the single transient effect.  This is the case in which a 

charged particle strike can generate a transient current pulse.  Depending on the circuit 

structure, this pulse may dissipate or be logically masked, but if it reaches a memory 

element with sufficient voltage and satisfies the setup and hold timing parameters of the 

device, the pulse can be interpreted as a valid signal and be passed along.  Logical 

masking occurs when a SET cannot be propagated to the outputs due to controlled values 

in the data path.    

 The logic structure and operating frequency of the device will dictate the 

probability of a SET becoming a SEU [5].  For smaller device technologies the supply 

voltage is greatly reduced, and less charge is stored at each node of the device.  This 

means that less energy is required to cause an anomaly decreases.  Therefore, a transient 

pulse has a better chance of exceeding the required nodal charge to be read as a valid 

signal.  Electrical masking, or having the transient pulse die out prior to reaching a 

memory element, also has less of an effect since the packing density increases with 

advanced technology and there are shorter distances between elements and logic.  This 

increased density implies a higher operating frequency, which increases the probability of 
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an SEU.  As devices features continue to be reduced, they are more susceptible to SEU 

events. 

2.10 Triple Modular Redundancy (TMR) 

 Mitigation of SEU events in SRAM-based FPGAs includes several popular 

techniques.  The first is Triple Modular Redundancy (TMR), where either parts or the 

entire circuit have outputs put into a majority voter to determine the correct output.  

Basically, as long as two out of the three agree on the correct value, the circuit will 

function as expected.  There are some limitations however.  First, TMR can be very 

expensive from both a processing and footprint standpoint.  Further, it is impractical to 

fully triplicate every single latch and memory element in the system.   

2.11 Scrubbing 

 The configuration bitstream is a vulnerable area, such that if a configuration bit 

gets changed, the circuit will not operate as expected until the design, or at least the 

effected portion, is reloaded.  This can be mitigated by a technique known as scrubbing.  

Basically, the configuration bitstream is checked periodically to detect errors.  Should an 

error be found, the relevant portion of the bitstream is re-loaded, usually from an off-chip 

ROM.   

2.12 Error Correction Coding 

 In memory elements, reliability can be greatly enhanced by the use of data 

encoding.  For example, in the code used in this work, a Hamming Code encoder and 

decoder was used.  This effectively takes an 8-bit piece of data and produces 13-bit data.  
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Appendix A contains a detailed example showing how the Hamming code is 

implemented on an 8-bit piece of data.  These additional bits are calculated by XOR-ing 

(even parity) or XNOR-ing (odd parity) certain bits together to produce five parity bits 

that are encoded with the original data.  Upon reading it, the 13-bit data is passed through 

a decoder that checks the parity bits to determine if a flip has occurred.  If an error is 

detected, it is automatically corrected and sent to its destination.   

Some algorithms also provide feedback to automatically re-write the memory 

cells.  This scheme can also detect multiple bit upsets, though it does not correct them.  In 

an environment where multiple bit upsets are a primary concern there are other encoding 

schemes that can be employed.  Reed-Solomon encoding is a commonly used technique, 

but beyond the scope of this work and will not be discussed further. 

 The major drawbacks to this approach are the additional memory storage space 

required and the time required to accomplish the encoding and decoding.  Some of these 

are combinational, but many are implemented to be synchronous, requiring clock cycles 

and therefore limiting the speed of the system.  For n-bit data, the encoded data takes 

approximately ln (2n), though this is not necessarily the worst impact.  The encoder and 

decoder modules use XOR and XNOR gates, which are very bulky and area intensive.  

Together, it can be a serious addition to the chip area.  It is important to note that these 

data encoding techniques are not just used for radiation or space applications, but high 

speed communications and memory in a wide array of applications.   



 

17 

2.13 MBUs 

 MBUs are becoming more and more common in SRAM.  Ionizing radiation can 

cause a fault in two adjacent memory elements due to the particle depositing energy in 

both.  This can be significantly dependent upon the angle of incidence.  With decreased 

transistor size, it takes less energy to cause an upset, and things are packed more tightly 

together.  As devices scale further and further down, it would seem that MBUs would 

defeat the encoding scheme.  However, another mitigation strategy can be employed; bit 

interleaving.  Bit interleaving requires that bits in the same piece of data are 

geographically separated from each other by a certain number of memory elements.  This 

does not impact the ability to store data, just changes the index used to locate all the bits 

in the desired data.  Many modern memory elements employ a combination of all these 

strategies as part of their internal function, and are invisible to the user. 

2.14 Radiation impacts at the transistor level 

Two gate-dielectric driven failure mechanisms are prevalent in transistors; oxide 

and interface trap mechanisms, and gate leakage.  No additional knowledge on these 

topics are required for this work, but further information on the details of these 

mechanisms can be obtained in [12, 15, 17, and 22].   

Radiation effects can be generally described as ionizing and non-ionizing.  

Ionizing radiation generates electron-hole pairs by depositing energy to elevate valence 

band electrons to the conduction band.  Non-ionizing radiation is a result of elastic 

atomic collisions which typically results in crystal lattice defects.  This causes basic 
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parameters that govern the basic physical characteristics of the device to change such as 

carrier mobility, capacitance, etc.   

The effects of radiation can be mitigated in some ways by adding additional 

transistors in series, since then even if one transistor is always on, the other can still act as 

the switch.  The worst case is when there are only NMOS transistors in parallel.  The 

NOR gate is a good example of this configuration.  Figure 5 shows this configuration.  A 

failure in either transistor will result in failure of the circuit. 

 

Figure 5 - A CMOS NOR Gate.  A failure in either NMOS transistor will result in ground 

being latched to the output [10] 
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III.  Methodology 

3.1 Chapter Overview 

The problem, as stated in Chapter 1, was two-fold.  First, a test methodology was 

required to try to isolate areas more susceptible to failure.  This methodology would 

require that data be collected to allow the user to pinpoint failure points and mechanisms.  

Second, a test platform needed to be constructed that would collect this data, and allow 

the device under test to be tested according to the methodology developed to address the 

first part of the problem. 

Since this work is geared toward space electronics and reliability analysis of 

SRAM-based FPGAs, a way was needed to accomplish radiation testing on these devices.  

However, it was desired that this system be expandable to accommodate other memory 

technologies.  In general, the following requirements were set forth for the test structure; 

it should be compact, versatile, adaptable, and low-cost. 

In this work, I provide a useable, expandable test structure, consisting of a 

combination of hardware and software.  The system is re-usable, flexible, and low-cost.  

Multiple parameters can be easily modified in a single parameter file to modify the 

system clock speed, effective clock speed, stimulus frequency, and reporting frequency to 

name some of the significant ones.  By varying these parameters, many experiments can 

be accomplished that can yield significantly differing results and insights when the DUT 

is exposed to radiation.  I validate the test structure’s operation and data collection 

scheme by exposing a Xilinx Virtex-4 FPGA to gamma radiation from a Co-60 source. 
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This work looked particularly at the Xilinx Virtex-4 FPGA.  These FPGAs are 

advertised as 90 nm technology, however different regions of the FPGA utilize varying 

thicknesses of gate insulator [23].  For functions that need to operate at maximum speed, 

such as the combinational logic blocks (CLBs) and switching network, the thinnest 

oxides are used.  The I/O pads use the thickest oxide thicknesses, while the configuration 

bits in general use the middle thickness of oxide [23].      

In order to test for weak points in the FPGA, various types of circuits were needed 

to pinpoint which part of a Virtex-4 FPGA is more susceptible to failure by stressing 

certain key areas.  Based on how these circuits demonstrate glitches and when, the 

vulnerable part of the FPGA can be identified.  This can be used to ascertain which parts 

of the circuit need to have increased reliability built in to the design.  In addition, the 

system allows for the user to quantify how much additional protection is afforded by two 

reliability-enhancing schemes, triple modular redundancy (TMR) and error correction 

coding (ECC).  Using this analysis, one should be able to ascertain which radiation effect 

is dominant given the technology used in the Virtex-4.   

Three primary test controllers are implemented on a controller board that 

communicates with the FPGA on the DUT, consisting of an adder controller, counter 

controller, and BlockRam controller.  The adder, counter, and BlockRam controllers 

provide all the stimuli to the circuits on the DUT, receive the raw data results back, 

analyze the data, and send data to a PC connected to the controller board through a 

Universal Asynchronous Receive and Transmit (UART) connection to a PC.  The three 
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primary controllers communicate with the UART using a fourth controller, a UART 

controller.   

3.2 Hardware 

The setup consists of a controller board connected to a test FPGA board utilizing 

I/O break-out-boxes, and laptop for data transmission as shown in Figure 6.  The ML405, 

 

Figure 6 - Block Diagram of hardware setup.  The ML405 has a Virtex-4 FPGA that 

sends control signals to another Virtex-4 FPGA on the DUT using the break-out-boxes 

(BOBs).  The controller board receives the results and sends data to the PC. 

 

The two boards were connected via ribbon cable and thirteen Cat5e cables from ML405’s 

two 64 pin headers (only half of which were actual signals while the other half was 

grounded) to the 50 pin header on the AVNET FPGA board.  Due to the number of 

control and data signals the counter and adder circuits had to be separated from the 



 

22 

BlockRam circuits for two separate bitstreams. A picture of the hardware setup is shown 

in Figure 7. 

 

 

Figure 7 - Photo of the test hardware in functional configuration.  The controller board 

and test board are connected via two breakout boxes to allow cat5e cables to run between 

them. 

3.3 Code Structure 

The controller board has four primary controller modules:  Adder_Control, 

Counter_Control, BlockRAM_Control and UART_Control.  A clock divider module, a 

First-in-First-out (FIFO) buffer, a transmitter module, and two finite state machines are 

also contained on the controller FPGA.  The test FPGA board has four versions of adder 

circuits, four versions of counter circuits, two BlockRAM modules, and the Error 
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Correction Coding (ECC) modules. These are described in further detail below.  For 

clarity, blocks in yellow are resident on the controller board.  Blocks in red are code 

modules on the device under test, and green blocks are sub-modules. 

3.3.1 Controller Board 

Figure 8 shows the code modules resident on the controller board.  The digital 

clock manager (DCM) clock module is created using Xilinx’s Core Generator.   

 

Figure 8 - Code Modules on Controller FPGA 
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It takes in the system board’s crystal 100MHz system clock, and outputs true 200MHz, 

100MHz, and 10MHz clocks.  By true, it means that the clock pulse width matches the 

frequency, or 5 ns, 10 ns, and 100 ns respectively.  These clocks are sent to the 

Parameters and Constraints module, where the user can determine which clocks should 

go to the test modules and the UART system.  The Parameters and Constraints file sets 

the frequency for which the Adder, Counter, and BlockRam controllers send stimuli to 

the circuits on the test board.  This file also sets the baud rate for the UART, and various 

data collection and reporting features. 

The effective clock module takes the system clock from the Parameters and 

Constraints file and enables the system to run at a slower clock frequency.  The Adder 

and Counter controller modules use the effective clock frequency to run the 

corresponding circuits on the test board.  The UART controller, two finite state machines 

(FSMs), First-in-First-out buffer (FIFO), and UART_TX comprise the data reporting 

system to the PC.     

3.3.1.1 Clock Management 

3.3.1.1.1 System Clock vice Effective Clock 

First, some terminology clarification when it comes to clocks.  There is the main 

system clock, which is the clock coming directly from the Xilinx Digital Clock Manager 

or DCM.  These include a 200MHz, 100MHz, and 10MHz clocks.  Then there is an 

effective system clock.  Suppose a user wanted to run the system at 100KHz.  Given that 

Xilinx does not have a main system clock of this frequency we include an enable 

statement following every clock statement.  The effective clock counter then counts the 
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number of cycles and only execute the code when the number of cycles has been met.  An 

example is as follows: 

If (clk’event and clk = ‘1’) then 
 If (clk_div_enable = ‘1’) then 
  Rest of code here 
 

So if there is a main system clock of 10MHz, and it is desired to run execute the 

code at an effective clock rate of 100KHz, the counter would be set to count 100 clock 

cycles before setting the enable to 1.  Therefore, the code following the enable would 

only be executed 100,000 times a second, or effectively a 100KHz clock.  Simply using a 

counter, as some other architectures attempt to do, will not work since the clock pulse for 

a simple counter does not have the 

 

Figure 9 - Waveform demonstrating the various clocking differences.  This shows 

200MHz, 100MHz, 10MHz true clocks, and an enable signals that results in a 1MHz 

effective clock 

 

proper period for a Xilinx FPGA.  A waveform is shown in Figure 9 to demonstrate this 

methodology.  An important thing to note, though, is that while the system is effectively 
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operating at 100KHz, the clock period for each pulse is still 100 ns, corresponding to the 

10MHz clock and not 10,000 ns which would correspond to a true 100KHz clock.  This 

has important ramifications when it comes to issues of cable lengths and clock control 

over various boards.  Simply stepping down the effective clock does not improve the 

likelihood of the pulse being recognizable over a long cable run.  In fact, testing showed  

3.3.1.1.2 Stimulus Frequency 

Often, when people discuss clock frequency, they are talking about the speed the 

circuits are being exercised at.  In this case it would be how many times per second new 

inputs are provided to the adders and counters.  For instance, suppose there is a 10MHz 

system clock and a 100KHz effective clock.  Further, suppose the counters are to count 

up 10 times per second.  Then, one could say the clock frequency of the counter is 10Hz, 

which is separate from the actual system clocks.  A variable is available in the system to 

allow the user to dictate how many times a new stimulus is supplied to the individual 

circuits.  This variable is set in the Constants and Parameters file, and is done by defining 

the number of clock cycles between stimuli based on the effective clock.  So in the case 

above, the effective clock is 100KHz.  For a stimulus frequency of 10Hz, the number of 

cycles would be set to 10,000 (100,000/10,000 = 10).  With a system that is traveling 

over a long length of cabling, this can be important so that additional clock cycles can be 

injected to allow time and cycles for data to travel over the lines.   

The maximum speed is limited by the length of the cables required to connect the 

two boards together.  The intended strategy was to run the board at the maximum 

frequency during irradiation, then compare to irradiation using a slower clock frequency 
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to see if the allowable dose increased.  The expectation was that a slower clock would 

result in the test circuits able to take more radiation and still function.   

3.3.1.1.3 UART Clocking 

For ease of re-use and to limit data errors for future users, de-coupling the UART 

clock from the main system clock was the best implementation method.  This allows the 

baud rate and the data transfer mechanism to remain untouched, regardless what clock 

speed or rate of stimulus the experimenter decides appropriate for that particular run.  

The UART parameters can be modified in the Parameters and Constraints file.  In this 

file, the UART can be set to run at any clock speed available.  The UART transmitter 

(UART_TX) takes two clocks, the main clock and basically an enable clock that is 16 

times slower than the main clock.  This port, 16_x_Enable, is fed by a counter that counts 

to a certain number of cycles then sends a single pulse.  The number of cycles is 

calculated as follows:  Suppose the main UART is 100MHz and I want to run at 9600 

baud.  Then the number of clock cycles would be: 

Clock speed / 16 / Baud Rate  = 100MHz/16/9600 = 651.2.   

The closest number is 651, which is within the transmitter’s tolerance of 1-2%.  Any 

other baud rate is supportable by modifying the number of cycles between pulses going to 

the 16_x_Enable port.  The UART transmitter only transmits a character when a pulse 

goes to the 16_x_Enable port. 
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3.3.2 Adder Circuitry 

Figure 10 shows a block diagram of the adder circuitry.  The adder controller sends 

stimuli to the adder circuits on the test board, reads the results, and sends any errors to the 

UART. 

 

Figure 10 - Adder Control Module.  The Adder Controller provides inputs to 3 adder 

circuits on the device under test.  It then takes the results, checks them, and sends any 

error to the PC. 

 

The FPGA under test contains three separate adder modules; a ripple carry adder 

(adder_RC), carry-look-a-head adder (adder_cla), and behavior adder (adder_behav).  

The purpose of looking at these adders was to see if one structure was significantly more 
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susceptible to radiation than the others.  Each adder is implemented in a different manner 

in the FPGA due to the differences in how they operate.  Suppose one wanted to add two 

4-bit inputs.  The ripple-carry adder would only calculate a bit after it had received the 

carry from the previous bit calculation, making it the slowest.  The carry-look-ahead 

adder takes one clock cycle by looking at the inputs to determine what the carries will be 

ahead of time.   The behavioral circuit allows the Xilinx synthesizer to determine the best 

configuration, though this may not correspond to the best configuration in a radiation 

environment.   

The Adder controller supplies two 4-bit numbers, A and B, to all three adder 

modules on the test board.  The B input is hard coded to be 0001 in order to save I/O 

pins, while the A input starts at 0 and incremented by one at the user-defined stimulus 

clock frequency.  The discrete 5-bit (four sum bits and a carry bit) results from the three 

adder modules are also directed to a voting logic module on the test board to determine a 

functional TMR (FTMR) solution.  The three adder results and FTMR solutions are 

reported back to the controller module on the controller board, where the non-TMR 

results are put through voting logic again to determine a full TMR solution, for a total of 

five, 5-bit adder results to be checked against the expected, or true, 5-bit result.  This is 

accomplished every clock cycle, so even though new inputs may not have been applied to 

the adders, if a bit flip occurs while computing the same inputs over clock cycles, it will 

be captured and show up on the output.   

The UART processes data serially, so all data is converted to hexadecimal to 

reduce the number of characters required to be transmitted by a factor of 4.  This is 
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accomplished in the individual controllers, such that a properly formatted bitstream is 

provided as the input to the UART controller.  The Adder UART messages are in the 

following format: 

Add_Data Read_Data True_Adder Code_TMR Code_System Time 

An example of the logic mapping methodology is in Appendix B. 

3.3.3 Counter Circuitry 

The counter control and circuitry structure is identical to the adder controller.  The 

controller sends an enable signal to a One Hot state encoded counter and two Up-Down 

counters on the DUT.  The controller receives the results, and outputs any errors to the 

PC. 

The counter controller supplies the enable signal to the three counter modules and 

receives back the 4-bit results from each of the three modules.  Once again, the results are 

put through voting logic on the test chip to generate a functional TMR solution.  Finally, 

the non-TMR results are put through voting logic on the controller board to generate a 

full TMR solution.   

The counter controller sends an enable signal to a one hot state encoded counter 

(Counter_OneHot) and a normal up-down counter that just incrementes the previous 

value by one (Counter_UpDown).  The enable signal is calculated based on the number 

of cycles between pulses as defined in the Constants and Parameters file.  Two instances 

of the Counter_UpDown and one instance of Counter_OneHot are used to implement a 

functional TMR on the test board.  Finally, the results of the three discrete counters are 

sent through voting logic on the controller board to give a fully-triplicate TMR solution.  
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These results are sent to the counter results module for analysis, and anomalies sent to the 

UART.      

These values are checked against the true counter value.  The counter UART 

message is in the following format: 

CTR_Data Read_Data True_Counter Code_TMR Code_System Time 

The codes are contained in Appendix C for a complete description. 

3.3.4 BlockRam Circuitry 

 BlockRam is Xilinx’s name for larger memory storage elements.  It is effectively 

chunks of SRAM on the FPGA.  The BlockRam controller uses a finite state machine to 

write patterns of 1’s and 0’s to two BlockRam modules on the test board.  The first 

BlockRam module simply stores the 8-bit data coming from the controller.  The second 

generates additional parity bits to be stored in the data stream using Hamming code to 

encode the data for error correction coding.  For more on the Hamming code, refer to 

Chapter 2.12.  Figure 11 shows the block diagram for the BlockRam function. 

 The BlockRam controller is connected to two separate BlockRams.  The 

BlockRams were created using Xilinx’s Core Generator.  The first was an 8-bit data ram 

block with 2048 addressable locations.  The Hamming encoder and decoder modules, 

were implemented as shown in paragraph 2.12 to accomplish single bit error correction 

and double bit error detection.  If a single error is found, it is automatically corrected and 

an appropriate error message generated specifying the bit location of the error.  If a 

double bit upset occurs no correction is accomplished, but an error code is generated for 

output through the UART to indicate a double event occurred.   
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 A state machine with ten states was implemented to accomplish the controlling 

functions.  A diagram of the state machine is shown in the Figure 12.  In State 0, a reset 

has just occurred and the variables are set to begin the first write pattern.  State 1 writes a 

checkerboard pattern to memory of 1’s and 0’s. 

 

Figure 11 - BlockRam Configuration.  There are two BlockRams that are controlled from 

the Virtex-4 on the controller board.  The second BlockRam utilizes a 5-bit Hamming 

code for single error correction and double error detection. 

 

  The user defines, in the Parameters and Constraints file, the number of 

consecutive addresses to write the 1’s and 0’s to.  This feature is to enable the user to 
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look for imprinting and other effects associated with clustering of 1’s and 0’s.  The 

BlockRam modules created using CoreGen also implement an automatic read-back 

feature.   

 

Figure 12 - BlockRAM Controller State machine. 

That is, when something is written to memory it is automatically echoed on the read line.  

In this manner, the data written is verified at the time of write to ensure that what was 

intended was really written into memory. 

 State 2 takes another parameter from the Parameter and Constraints file.  The user 

defines a set number of clock cycles to wait.  This enables the user to define how long the 

data is under radiation before reading to verify the contents.  These reads can occur just a 
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few clock cycles after writing, or tens of seconds or longer as desired.  The number of 

cycles in the file is based on the effective clock.   

 State 3 reads all the addresses and checks them to verify data integrity.  Both the 

8-bit and 13-bit blockRams are checked simultaneously.  This is important, so that 

hopefully any errors will be shown to be corrected.  Given the ECC overhead, it is useful 

to know how much additional protection is offered in the Virtex-4 FPGA vs using only a 

stand-alone BlockRam.  It would be useful to quantify this for military designers as space 

and performance can be at a premium.  Experimental data would help tremendously in 

the final cost-performance trade-off. 

 State 4 performs a second wait, while State 5 performs the second data read.  

State 6 does a third wait cycle, and State 7 does a third read cycle.  State 8 writes the 

opposing checkerboard pattern to memory.  For instance, if memory addresses zero 

through nine contained “00000000” and addresses ten through nineteen were written with 

“11111111” on the first write in State 1, State 8 would write “11111111” to addresses 

zero through nine and “00000000” to addresses ten through nineteen.  The purpose of this 

state is to check for hard imprinting of the address.  This write and subsequent read 

happen very quickly with no wait interval between them.  The vast majority of the time 

under irradiation will be spent with the initial checkerboard pattern.  Finally, State 9 does 

a final read of the data that was just written in State 8.  Following this, the controller 

returns to State 1 to re-write the initial checkerboard pattern, and the entire cycle repeats 

until the user removes power. 
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 At this point, the user should re-apply power and re-program the device.  Since 

the BlockRams are not initialized to any value, it is unknown what value may be written.   

Imprinting is the effect that a transistor or element, especially memory, is pre-disposed to 

be one value consistently over another.  This does not mean it cannot be written, but the 

data that was previously written may be accessible by reading the memory even after 

power has been removed.  To check for imprinting of the device, the BlockRam 

addresses should be read to see if their contents match what was previously written there 

following irradiation.  Should the data show significant retention, it would be very useful 

for reverse-engineering or anti-tampering work.  

Once again, in order to save serial processing time all of the data is in hex.  The 

BlockRAM UART message is in the following format: 

BRM_Address_8-Bit Data_13-Bit Data_ECC Code_System Time 

The BlockRAM tables describing the appropriate codes are contained in Appendix D. 

3.3.5 UART Printing 

The UART print function accepts fully mapped, formatted data streams from each 

of the three primary controllers.  The adder, counter, and BlockRAM controllers convert 

the values to be printed to hexadecimal, then maps those characters to their ASCII 

equivalents for output through the UART.  A diagram is shown in Figure 13. 

This module was much more complicated than first anticipated.  The UART 

controller prioritizes the data for printing by assigning the adder module with first 

priority followed by the counter.  When data is ready, a flag is set, causing the controller 

to send data to the first finite state machine (FSM).  The purpose of the first FSM module 
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is to keep the same error message from being printed repeatedly over numerous clock 

cycles due to differences in the effective system clock and the UART clock.   

 

Figure 13 - UART Controller and Printing Modules.  Data from the controller goes to the 

FIFO, and then to the transmitter to be sent to the UART 

 

Suppose the UART clock is running at 100MHz.  If the effective clock were 

1MHz, there would be one hundred clock cycles where data would be sent from the 

controller instead of just one.  This would result in the same error message being 

erroneously written numerous times, and overload the buffers.  It would also make data 

analysis more difficult.    

3.3.6 Detailed discussion of programmable parameters 

 One of the goals in this work was to make a test setup that was very extendable 

and applicable for a wide range of experiments.  To accomplish this, vital parameters 

were made part of a top-level file called Parameters and Constraints.  This file contains 

the parameters required for: 

 - System Clock 

 - Effective Clock 
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 - Baud Rate 

 - Frequency of Adder Stimulus 

 - Frequency of Counter Stimulus 

 - Frequency of Auto-reporting current results 

 - Number of 1’s and 0’s for BlockRam checkerboard pattern 

 - Time between BlockRam read and write cycles 

3.3.6.1 System Clock 

The Parameters_Constraints.vhd file contains the following code for clock ports: 

inClk_200MHz:   in std_logic; -- Input clocks 

           inClk_100MHz:   in std_logic; 

            inClk_10MHz:   in std_logic;        

          outSystem_Clk:   out std_logic – output system clock 

There are three main system clock frequencies available, 200MHz, 100MHz, and 

10MHz.  These are true clocks with proper clock periods of 5 ns, 10 ns, and 100 ns 

respectively, with half of the period being high and half the period being low.  Any of 

these can be assigned to the outSystem_Clk port, which feeds the clock ports of the adder 

controller, counter controller, blockRam controller, and UART controller. 

 
3.3.6.2 Effective Clock 

By setting the clk_frequency_EffectiveCycles parameter in the Parameter and 

Constraint file to a certain value, the system will only execute its primary code modules 

after a set number of cycles.  This means that with a 10MHz system clock, a 100KHz 

effective clock rate can be obtained by setting the value above to 100 (10MHz/100 = 
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100KHz).  The clock period will still be 100 ns, which is why this is effective and not a 

true clock since a 100 KHz clock would have a true period of 10,000 ns.  The system will 

run at the true system clock speed by setting this parameter to zero.  There are constants 

provided in the Parameter and Constraints file for the user’s convenience to automatically 

calculate these frequencies, however if a custom value is needed, it can simply be added 

to the constants declaration.  

3.3.6.3 Baud Rate 

 The following lines are contained in the Constraints and Parameters file: 

  outUART_Clk:   out std_logic; 
                       Baud_Calc_16_x_Enable_Cycles: out std_logic_vector (10 downto 0) 
 
outUART_Clk is the main UART system clock.  This value can be set to any of the main 

system clocks available in the Constraints and Parameters file.   

 

Baud_Calc_16_x_Enable_Cycles is a constant that is passed to the baud rate 

divider module.  The purpose of this constant is to provide a counter with the proper 

number of cycles in order to provide a pulse at the right time for UART_TX.  Every time 

one of the pulses from this module is sent, a single serial character is transmitted.  

Baud_Calc_16_x_Enable_Cycles is calculated as follows: 

 

  UART Clock Frequency/16/Desired Baud Rate 

Suppose the UART clock is 100MHz and the user wanted to run at 9600 Baud.  Then the 

above parameter would be set to 651.  For a 19,200 baud rate, the variable would be set 

to 325. 
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9600 Baud:   100MHz/16/9600 = 651 

19200 Baud: 100MHz/16/19200 = 325 

The appropriate constants were provided in the file for baud rates up to 57,600 using 

either the 100MHz or 200MHz clock.  To modify the baud rate, the user must simply 

assign one of the following constants to the signal in the Constraints and Parameters file. 

3.3.6.4 Frequency of Adder Stimulus 

The variable experiment_Adder_Stimulus_Frequency_Cycles controls how many clock 

cycles occur between stimuli to the adders.  The number of counts is based on the 

effective clock.  Suppose the main system clock is 10MHz, and the effective clock is 100 

KHz, and the user wanted to provide new inputs 100 times per second.  Then the above 

port would have a num_1_Thousand assigned to it. 

 100KHz/1000 = 100 

3.3.6.5 Frequency of Counter Stimulus 

 The parameter experiment_Counter_Enable_Frequency_Cycles controls how 

many clock cycles occur between enable pulses to the counters.  The number of counts is 

based on the effective clock.  As in the adders, suppose the main system clock is 10MHz, 

and the effective clock is 100 KHz, and the user wanted to provide new inputs 100 times 

per second.  Then the above port would have a num_1_Thousand assigned to it. 

 100KHz/1000 = 100 

3.3.6.6 Frequency of Auto-reporting current results 

 The parameters autoReportStatus_Cycles_Adder and 

autoReportStatus_Cycles_Counter allow the user to have the software report the current 
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data being processed at a given, recurring time.  The message follows the same format as 

an error message.  This feature is primarily to ensure the circuit is still operating properly, 

and to automate regular data collection.  The number of cycles for the parameters is based 

on the effective clock.  Suppose the system clock is 10MHz and the effective clock is 

100KHz, and the user wanted the system to report the current data every 30 seconds.  

Then the parameter would have assigned to it: 

30 * num_100_Thousand 

Also implemented is a user, on-demand reporting switch.  At any time the user wants 

data to print to the UART, a switch must simply be hit and the current contents will be 

printed.  Further, a switch to suspend data reporting is also implemented.  This was 

necessary in the case where a cascading failure occurred and filled the buffer.  This stops 

the error from reporting and stifling any other error messages being reported by other 

modules.  Another use for this feature is after an experimental run is accomplished, the 

other buffers can be emptied by turning off the higher prioritized modules. 

3.3.6.7 Number of 1’s and 0’s for BlockRam checkerboard pattern 

 The variable num_1_0_Checkerboard allows the user to define the number of 

alternating 1’s and 0’s.  For instance, suppose the user wanted to have alternating blocks 

of one hundred 1’s and 0’s.  Then the above parameter would be set to num_1_Hundred.  

Then, following irradiation it was determined that instead of blocks of 100, every address 

should alternate.  Then the parameter could be easily reset to num_Zero without having 

to modify the blockRam controller in any way. 
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3.3.6.8 Time between BlockRam Read and Write Cycles 

 The parameter blockRam_Read_Cycles allows the user to define how heavily 

utilized the blockRam modules are.  Suppose the user wanted to have the data write, then 

wait 10 seconds between the subsequent reads.  With the same clocking parameters laid 

out above, the number of cycles would be set to:  

10 * num_100_Thousand 

In a subsequent or different experiment, the user may want to exercise the BlockRam 

more heavily.  In this case the value could be set to say, num_Ten such that only ten 

clock cycles would go between reading all the data in the BlockRam modules. 

3.4 Mapping of Codes to FPGA Elements and Failure Analysis 

The types of circuits and adders that werebuilt for this test were specifically 

chosen to target certain areas of the FPGA.  Diagrams of the Virtex-4 sliceM and sliceL 

are shown below in Figures 16 and 17, with the fast-carry-look-ahead logic in Figure 18.  

Using a logical analysis of the data results, one should be able to make reasonable 

assumptions about which areas of the FPGA or types of elements need to have attention 

paid to them during design.   

The Virtex-4 uses a triple oxide process, where transistors that have to operate 

faster (CLB transistors, pass transistors) have the thinnest oxides while the I/O pads have 

the thickest oxides.  The configuration bit transistors make up the middle thickness 

transistors.  I expect that more effects will be seen within the CLBs, though Xilinx claims 

the Virtex-4 FPGAs are immune to latchup.  First, the general area of failure can be 

determined.   
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The structure of a Virtex-4 FPGA slice [25] is shown in Figure 14 and 15.  Each 

is stored differently within the slice.   

 

Figure 14 - Virtex-4 Slice M.  Slice M can be used for logic or memory [25] 
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Figure 15 - Virtex-4 Slice L block diagram [25]. 
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Figure 16 - Virtex-4 CLB Fast-Carry Lookahead logic structure [25] 

The ripple carry adder will span multiple CLBs and utilize the carry chain for 

every stage.  The CLA adder will be stored as a Boolean function within the look-up-

table.  Finally, the behavioral adder is implemented by the synthesizer in the best manner 

possible, which in this case should be the fast-carry-look-ahead logic within the CLB.  

This structure is highlighted in Figure 16.  Therefore, if one of the adders would tend to 

show failure before the others, the specific area within the CLB could be identified as an 

area of concern.  Also, since the outputs of the individual adders are also put through 

voting logic, which is also output, the Adder Controller can compare if the individual 

outputs match what was received by the FTMR module.  This can help isolate errors 
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occurring in the routing logic and the I/O pads.  Tables 7 through 10 summarize what 

kind of errors point to which areas.  The intention is to treat this as any series of 

experiments.  Run the first set to focus which area of interest is likely the problem area.  

Then, either refine or create new experiments to further isolate subcomponents within the 

major area of interest. 

Table 2 - Summary of adder errors to isolate major area of failure 

Case 
Individual 

Adders FTMR Circuit 
FX20 Results 

Module Implication 

1 

Individual 
Adder has an 
error 

FTMR Module 
Produces Error 
Code 

Error Read 
matches FTMR 
Code Error Error occurred in CLB 

2 

Individual 
Adder has an 
error 

FTMR Module 
Produces Error 
Code No Error Read 

Error occurred in 
switching network when 
data was passed to 
FTMR module.  Case 4 
should also be seen for 
routing logic to be 
primary failure area  

3 

Individual 
Adder has no 
error 

FTMR Module 
Produces Error 
Code No Error Read 

Error occurred in FTMR 
voting logic 

4 

Individual 
Adder has no 
error 

FTMR Module 
Produces No 
Error Code 

Error Read on 
FX20 

Error occurred in IO 
pad or routing logic.  If 
same effect is 
consistently seen, IO 
pad is most likely area. 

 

Table 3 - Summary of adder errors to isolate area within the CLB 

Case Adder Circuit Targeted Area Comment 

1.1 
Ripple Carry 
Adder Carry chains 

Error should consistently show on 
either the 3rd bit or last carry out 

1.2 
Carry-Look-a-
head Adder Look Up Table 

If transient effect, then should 
only error one time.  May also 
only error on the same inputs 
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Configuration 
Bits 

Error should manifest itself 
repeatedly.  Possible if error only 
occurs for same inputs.  Probable 
if multiple table entries error at the 
same time 

1.3 Behavioral Adder Arithmetic Logic 

Assumes behavioral 
implimentation uses Fast Carry 
Look-a-head internal Logic 

 

Table 4 - Summary of counter errors to isolate major failure areas 

Case 
Individual 
Counter FTMR Circuit 

Results 
Module Implication 

1 
Individual Counter 
has an error 

FTMR Module 
Produces Error 
Code 

Error 
Read 
matches 
FTMR 
Code 
Error Error occurred in CLB 

2 
Individual Counter 
has an error 

FTMR Module 
Produces Error 
Code 

No Error 
Read 

Error occurred in 
switching network 
when data was 
passed to FTMR 
module.  Case 4 
should also be seen 
for routing logic to be 
primary failure area  

3 
Individual Counter 
has no error 

FTMR Module 
Produces Error 
Code 

No Error 
Read 

Error occurred in 
FTMR voting logic 

4 
Individual Counter 
has no error 

FTMR Module 
Produces No Error 
Code 

Error 
Read on 
FX20 

Error occurred in IO 
pad or routing logic.  If 
same effect is 
consistently seen, IO 
pad is most likely 
area. 
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Table 5 - Summary of  counter errors to isolate CLB components 

Case 
Counter 
Circuit Targeted Area Comment 

1.1 
UpDown 
Counter Flip Flop 

Error should consistently show on 
either the 3rd bit or last carry out 

  CLB 
Error should consistently occur on 
the same count 

1.2 
One Hot 
Counter Flip Flop Chain 

If transient effect, then should 
only error one time.  May also 
only error on the same inputs 

 

Suppose an error occurs, and the code for the FTMR module matches what the results 

module receives on the controller board.  This would imply that the error occurred in the 

CLB, not the I/O pad or routing logic.  The other expected options are laid out in the 

tables.  This is not to imply these are all-inclusive, or that multiple kinds of errors will not 

occur.  However, with enough data collected, the logic trail should be easy enough to 

isolate the problem component.  There are other possibilities, such as there is no 

consistent error.  In this case, one has to start looking at common structures to all the 

major areas.  These could include multiplexers and tri-state buffers.   In this manner it can 

be determined what areas need to be hardened to produce a more radiation tolerant 

design.   

3.5 Summary 

I have developed my test architecture and setup to isolate potential fault sites 

within an FPGA.  This setup and code structure should work for any type of FPGA, with 
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the only difference being the clock , FIFO, and BRAM modules that were generated 

using Xilinx tools would have to be generated using the other manufacturer’s software. 
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IV.  Analysis and Results 

4.1 Chapter Overview 

To validate the design and functionality of my setup in a legitimate environment, 

two FPGA boards were obtained to test during irradiation.  The limited number did not 

impact the ability to demonstrate that the setup can be adjusted to run over a broad range 

of conditions while in a radiation environment.  I successfully irradiated the FPGA 

boards, and showed the setup worked as expected and that data was collected as intended. 

4.2 Test Strategy 

To accomplish testing, the design was validated at the nuclear reactor using a 

gamma cell with a Co-60 source.  The test unit was first put at the height corresponding 

to the highest exposure, since it could not be assumed that sufficient dose would be 

absorbed to see errors.  As soon as glitches were reported, the board would be pulled out, 

and tested outside of the radiation chamber.  The unit was baselined for normal operation 

prior to testing.  Depending on the timeframe involved in seeing a problem, the test board 

would be irradiated at a lower dose rate.  In doing this, the goal was to gather data over 

several runs and varying dose rates using just the single board.  Also of interest was any 

compound effects due to multiple exposures to gamma radiation.  This approach did pose 

the risk that permanent damage could occur on the first test, thereby eliminating any 

chance to do additional data collection.   

4.3 Experiment Setup 

The DUT was exposed in the gamma cell at the maximum dose rate of 86 krad 

(tissue)/hr, which is roughly equivalent to the equivalent dose rate for silicon.  Pictures 
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showing the actual configuration are shown below.  I operated the adder stimulus at both 

1Hz and 10Hz, with no issues.  The counter operated at 1Hz.  The UART operated at 100 

MHz and 9600 Baud.  The system clock was set to 10MHz and the effective clock was 

varied from 100KHz to 1KHz by stepping down by powers of ten.   

  

 

Figure 17 - Photo showing setup at reactor site 
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Figure 18 - Test board secured in the gamma cell elevator 

 

I experienced several issues upon arriving, including a coding error that needed to be 

corrected, and problems with the UART port on the monitoring laptop.  I attempted to 

measure the current, only to find that I could not get the ammeter between the DC 

converter and the board.  I had intended to monitor this to look for power effects.  Should 

the unit have drawn more current while irradiating, it would have indicated that either the 

power MOSFET was being affected, or possibly latchup.  Multiple runs could give a 

better idea what was happening. 
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Figure 19 - Test board in the gamma cell under radiation 

4.4 Results of Experimental Testing 

 The FPGA lost power after 00:59:32 (HH:MM:SS).  The unit operated as 

intended over a fifteen foot cable run, though in the future some buffering of data may 

improve reliability.  All parameters were validated while being irradiated, though the 

results were not as useful since the DUT failed due to power anomalies before any upsets 

or glitches were detected by the controllers.  Upon removing the board from the chamber, 

the board clearly still had power since certain LEDs were illuminated.  However, when 

attempting to re-program the FPGA immediately upon removal from the gamma cell, the 

FPGA was not detected by the software, indicating the FPGA was not powered. 
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Figure 20 - Adder controller data during irradiation.  Data Indicates normal operation. 

 The next day the board was programmed again.  This time the FPGA programmed 

and ran correctly, but the external temperature of the chip was 35 degrees higher than 

prior to irradiation.  This indicates two important things; first, more power was being 

consumed due to increased power dissipation, and second, that the effects of radiation 

self-annealed during the night.  Further experimentation is required to more precisely 

determine what element of the FPGA, be it the CLBs, routing network, or the power 

MOSFET.  The first indication would seem to be a problem with the power MOSFET, 

though this could easily turn out to be incorrect. 

One effect that was noticed involved the clock issues mentioned before.  Just 

stepping down the clock does not guarantee the ability of the counters on the test board to 

interpret the clock pulse as a valid pulse.  Over shorter distances of a few feet no 

problems were seen, but over longer cable lengths the counter would show enough clock 

skew that the counter would start to count slower than the counter module anticipated, 

resulting in errors.  Normally this occurred after a consistent period of time, making it 
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possible to look at the timing of the error to determine if it is a result of clock skew or a 

legitimate error.  It is possible that clock skew could increase during irradiation, which 

would be exhibited by the consistency of the timing of errors changing to shorter time 

periods.  This was not checked during experimentation.   

This can be mitigated in several different ways.  First, additional clock cycles can 

be inserted between when the stimulus is provided and when the result is analyzed for 

correctness.  Second, the signal can be amplified with a buffer to increase the strength 

and make sure the clock pulse is read.  This will also result in additional clock pulses 

needed between when the stimulus is applied and when read and verified. 

4.5 Analysis of Range of Experiments 

One of the primary goals in this work was to make a platform that would take one 

of the most significant variables between experiments out of play.  The experimental 

setup and data collection can make a real “apples to apples” comparison of data quite 

tricky, and to this point no setup was readily available that multiple users could utilize to 

directly compare experimental data.  The system ran as expected after repeatedly varying 

all aspects of the Parameters and Constraints file, resulting in a much expanded capability 

for a broad range of experiments.  Some examples of these are as follows: 

Clocking 

 - Differences between effective and true clocking 

 - Differences between true clocks 

 - Clock skew 

 Stimulus 
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-  Differences in time between stimuli 

 BlockRam 

 - Susceptibility to SEUs 

 - Differences in clustering of 1’s and 0’s 

 - Differences in time values are allowed to sit in memory 

 - Susceptibility to data imprinting 

Radiation testing has the potential to show very different effects depending on 

how these parameters are varied together.  It is also possible that different areas may 

exhibit failure based on the varied values of the parameters.  For instance, under high 

frequency counting, the clock may skew enough such that the flip flop fails.  Under 

slower clocking conditions, possibly the error would occur first in the switch network or 

I/O pad. 

A secondary application for the BlockRam controller is in the use of SRAM 

testing.  The controller can be very easily modified to add the additional one or two 

control signals if required, but the patterning is still applicable for good comparison 

testing from SRAM to BlockRam, BlockRam to BlockRam, or SRAM to SRAM.  It will 

also provide a stable setup to once again compare apples to apples across multiple chips, 

including radiation hard chips. 

Finally, the code for this setup is completely portable to any other model of Xilinx 

FPGA, and any other manufacturer’s FPGA.  A couple of core-generated modules would 

have to be created under the software of that particular manufacturer.  The only 

requirement is for enough pin connections to adequately pass data back and forth.  This is 

important so that not only FPGAs with different technology sizes can be tested against 
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the same benchmark, but different manufacturer’s FPGAs can also be measured against 

that same benchmark.  One would reasonably expect FPGAs with different feature sizes 

to respond quite differently to a radiation environment.  Further, different manufacturers 

lay out their circuits in completely different manners, resulting in quite probably a very 

different response to the same stimulus under testing.  This flexibility also extends to 

SRAM chips. 

Important too is the feature that new controller modules can easily be integrated 

into the controller chip.  So for instance, one could write a DRAM or SDRAM controller 

that followed a similar methodology to the BRAM/SRAM controller.  Previous work has 

identified that DRAM does have failure when put in a radiation environment, but no data 

was provided that could assist in defining where and how the error occurred, and more 

importantly how to mitigate it.  This will be discussed in further detail in Chapter 5. 

 Finally, the cost of the system is a few hundred dollars.  With the laptop, 

hardware, and FPGA boards, the total system cost less than $1000.  Given that the laptop, 

controller board, and break-out-boxes can be re-used, the recurring cost of the system is 

approximately $400 for the specific board tested in this work.  Other test boards may cost 

more or less, but the test setup effectively takes the place of very expensive logic 

analyzers, function generators, and monitoring devices.  Additionally, the data parsing 

accomplished by the controller modules processes the vast majority of raw data that must 

be eliminated to find the few relevant and significant facts. 
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V.  Conclusions and Recommendations 

5.1 Chapter Overview 

This work has provided a robust methodology for targeting areas of SRAM-based 

FPGAs, as well as a low-cost, versatile, and expandable test setup that can be re-used for 

many types of experiments on numerous types of chips.  The setup has been utilized for 

experimentation, and validated that all data reporting systems functioned as expected.  

The system is easily modified and capable gathering the relevant data that can assist 

researchers isolate areas of weakness in the devices under test. 

5.2 Conclusions of Research 

Data was obtained that showed a loss of power to the FPGA under test before any 

errors were logged.  However, by repeating the experiment with a larger sample size and 

varying the dose rate it is very possible errors will be seen in the areas being targeted.     

5.3 Significance of Research 

This work will allow future researchers to eliminate six months or more of 

software writing and hardware building.  Using this apparatus, future experiments should 

be able to isolate vulnerable parts of FPGAs and other chips, over multiple technology 

generation and multiple manufacturers, using less equipment and requiring fewer hours 

of data analysis.  Additional controllers for other types of memory such as SRAM, 

MRAM, DRAM, etc can be written and easily integrated without interfering with the 

controllers and reporting system already in place.  This contribution will be invaluable to 

future users, as this will provide a common baseline over which to compare experimental 
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results, as well as common data collection, which typically makes it very difficult to 

compare data when different test setups and data parameters are used.     

5.4 Recommendations for Action 

Some immediate enhancements that are recommended are the placing of an 

additional parameter in the counter module to allow for automatic reset after a specified 

period of time.  This should reduce errors related to cable length and clock skew.   

In addition, the addition of a FIFO buffer for each of the individual controllers 

will allow more data to be buffered in preparation for sending to the PC.  Currently, the 

buffer size is limited to five, and is stored in the UART controller.  This will make the 

UART control truly independent, and even more easily facilitate adding additional 

controller modules for other types of memory and chips.  The UART can then be used to 

simply define the print priority of the FIFOs, and send the control signals to notify when 

data is ready to print.   

5.5 Recommendations for Future Research 

5.5.1 DRAM 

 Many areas of future research can be investigated using this hardware and 

software suite as the initial starting point.  The BlockRAM controller especially, should 

be expanded with interrupt logic to make it suitable for DRAM.  This would be very 

relevant given past work by Capt Eric Lam and Maj David Arnold on DRAM memories.  

The data collection capability of this system can give great insight into the cause and 

location of the effects they observed in their simple testing setup. 
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5.5.2 SRAM 

 The BlockRam controller is extremely easy to adjust, if any adjustment is 

required at all, to use for SRAM testing.  At most, an additional control signal may be 

required and a change in the addressing to account for more memory locations.   

5.5.3 Magnetic RAM (MRAM) 

 MRAM needs a lot of experimentation performed.  This can be easily 

accomplished using the established principles for data collection and control I have 

established in this work.  A new controller should be written for this to properly interface 

with the chip.  Using Chapter 3 of this thesis, a person with reasonable VHDL skill and 

basic background in controllers and radiation effects should be easily able to define the 

critical data parameters and program the controller to provide the required stimulus and 

report the results. 

5.5.4 FPGAs from Multiple Technology Generations 

 This would require no modification of the test setup and controllers as they are 

currently written.  Sufficient I/O capability and a form factor that will allow the DUT to 

fit in the chamber are the only requirements that must be carefully matched.   

5.5.5 FPGAs from Multiple Manufacturers 

 Moving to multiple manufacturers would have the same requirements as above. 

5.5.6 Radiation Effects on the Clock 

 In the current setup, the clock for the board under test is driven from the controller 

board.  It would be interesting if the results of experiments were different if the clock was 

driven from the board being irradiated.  Should different results be seen, it would 

quantify the susceptibility of the clock to inducing errors in the system.  Since virtually 
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every major system is synchronous clock effects can have a dramatic effect on circuit 

reliability.  This modification is easily accomplished by associating all clocking and 

synchronous logic on the board with the 100MHz clock resident on every Xilinx FPGA 

board. 

5.5.7 Irradiation Using Different Sources 

 This test used gamma radiation from a Co-60 source.  Other sources could be 

utilized to look for differing radiation effects.  An electron gun can hit very specific areas 

with high energy electrons.  However, some things have to be taken into account.  The 

heat generated by the electrons necessitates the use of a nitrogen-cooled cold finger.  In 

addition, there is a potentially large flux of X-rays given off with sufficiently high 

electron energies that could potentially corrupt the controller board making it more 

difficult to determine where an error occurred. 

 Neutron radiation can be used to test chips and boards for displacement damage, 

but neutron irradiation is made more difficult due to the fact that the elements under test 

will become activated.  This includes the test structure the chip is mounted in, making it 

more challenging to do multiple tests with different kinds of stimuli. 

5.6  Summary 

In summary, the work demonstrated in this thesis a provides a greatly enhanced 

testing methodology, structure, and setup that will be of great use for current and future 

researchers.  This platform will have a common data reporting methodology, and a 

common baseline with which to do true “apples to apples” comparison.  This will enable 

future experimenters to spend a majority of their time on experimentation instead of test 
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setup construction.  This work provides for an excellent jumping-off point for follow-on 

researchers to make a greater impact in future radiation experimentation and space 

systems reliability.  In the past, very little has been passed from researcher to researcher 

at AFIT, such that each new student has had to start virtually from scratch.  Hopefully 

this will not be the case in the future enabling the program to be much more relevant in 

the radiation effects and space systems world. 
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Appendix A: Hamming Code Example 

 

This work used a Hamming code based on the following parity scheme.  Suppose 

the following data word was to be stored:   

(D7 : D0) = 01001110.   

To implement double error detection and single error correction, a total of thirteen bits 

will be required.  The original bits are ordered as follows: 

 

  

The parity equations for encoding are calculated as follows: 

P0 = D0 xor D1 xor D3 xor D4 xor D6 

P1 = D0 xor D2 xor D3 xor D5 xor D6 

P2 = D1 xor D2 xor D3 xor D7 

P3 = D4 xor D5 xor D6 xor D7 

P4 = P0 xor P1 xor D0 xor P2 xor D1 xor D2 xor D3 xor D4 xor P3 xor D5 xor D6 xor D7  

The final parity bit is what allows for double error detection.  If only single error 

correction were desired, then the final parity bit could be eliminated.  The complete 13-

bit encoded data is shown below. 

 

 

Upon decoding, five error bits are calculated by XOR-ing the original equations 

for the parity bits with their respective parity bit. 

Error 0 = P0 xor D0 xor D1 xor D3 xor D4 xor D6 

Error 1 = P1 xor D0 xor D2 xor D3 xor D5 xor D6 

P4 P3 D5 D6 D7 D1 D2 D3 D4 P0 P1 D0 P2 

  0 1 0 1 1 1 0   0  

P4 P3 D5 D6 D7 D1 D2 D3 D4 P0 P1 D0 P2 

0 1 0 1 0 1 1 1 0 1 1 0 1 
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Error 2 = P2 xor D1 xor D2 xor D3 xor D7 

Error 3 = P3 xor D4 xor D5 xor D6 xor D7 

Error 4 = P4 xor P0 xor P1 xor D0 xor P2 xor D1 xor  

D2 xor D3 xor D4 xor P3 xor D5 xor D6 xor D7 

The error code is then translated using this relationships in Table 6. 

Table 6 - Error codes following initial parity bit check to decode Hamming - encoded 

data 

Error 
Code  Implication 
00000  No Error 
00001  P0 Incorrect 
00010  P1 Incorrect 
00011  D0 Incorrect 
00100  P2 Incorrect 
00101  D1 Incorrect 
00110  D2 Incorrect 
00111  D3 Incorrect 
01000  P3 Incorrect 
01001  D4 Incorrect 
01010  D5 Incorrect 
01011  D6 Incorrect 
01100  D7 Incorrect 

01101  
Double Bit 

Error 
 

Upon detection of a code other than 00000, the appropriate bit is inverted before being 

sent to the output.  This scheme is very simple, yet powerful for protecting memory, 

registers, register files, etc.  It is important to note that for the scheme to work correctly, 

bits that are protected or checked by the same parity bits should not be placed next to 

each other in memory.  This could result in a Multiple Bit Upset (MBU) event that will 

defeat the parity check and have the system put out an incorrect value without detecting 

that an error occurred.   
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Appendix B: Adder Code Tables and Examples 

This appendix provides an example utilizing the methodology to determine the 

failure mechanism in the FPGA.  The adder data code is in the following format: 

ADD_Data Read_Data True_Adder Code_TMR Code_System Time 

The codes are in hexadecimal format to save processing time.  Also, each TMR voting 

logic has a 2-bit code indicating whether any of the inputs did not match.  These four bits 

are combined such that the FTMR code is the higher order bits and the TMR code 

comprises the lower order bits.  Take the following example for an error in the 

combinational logic block. 

 Suppose the following code is reported by the test structure. 

ADD_05_07_02_F_0000426AF1 

The data read in binary is 00101.  The true data is 00111.  This indicates that the 

second bit has flipped from a 1 to a 0.  The adder status code of 02 indicates the ripple 

carry adder produced the wrong data.  In addition, the FTMR and TMR modules reported 

the correct result, and indicated a code of 11 for both the FTMR and TMR voting logics.  

This is also the code for the ripple carry adder to show that both voting logics received 

the incorrect input from the CLB where the result is processed.  Taken together, this 

should guide the experimenter to the CLB as the failure location.   

A second example will show a failure in the routing logic.  Suppose the following 

code was received: 

ADD_05_05_08_8_0000426AF1 

Notice that the read result and the true result match.  This indicates a failure was 

detected by the voting logic and corrected it.  Next, the adder status code of 08 tells  the 
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experimenter the FTMR voting logic reported this result code.  Also, the TMR code of 8, 

or 1000 in binary, shows that the TMR voting logic reported no error, while the FTMR 

voting logic found a mismatch with the carry-look-ahead (CLA) adder.  Since the adder 

status code reported no error in the CLA adder result, the TMR voting logic confirmed no 

error, and the FTMR reported a mismatch, the error most likely occurred in the switch 

logic prior to the result reaching the FTMR voting logic. 

A similar methodology, using the tables in Appendices B through D, can be used 

to isolate potential failure points.  In many cases, a cause may not be directly attributable 

to a single point, and instead trends must be analyzed to make the best determination for 

the most likely area of interest.  Finally, additional experiments may need to be 

developed to provide more refined data for the researcher. 
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Appendix C: Counter Code Tables 

Table 7 - Counter Status Codes 

Comment Counter Code 
No Error 0 
UpDown 1 Counter 1 
One Hot Counter 2 
OneHot, UpDown1 Counters 3 
UpDown 2 Counter 4 
UpDown 2, UpDown 1 Counter 5 
UpDown 2, OneHot Counters 6 
UpDown 2, OneHot, UpDown1 Counters 7 
FTMR Counter 8 
FTMR, UpDown1 Counters 9 
FTMR, OneHot Counters 0A 
FTMR, UpDown1, OneHot Counters 0B 
FTMR, UpDown 2 Counters 0C 
FTMR, UpDown2, UpDown 1 Counters 0D 
FTMR, UpDown 2, OneHot Counters 0E 
FTMR, UpDown2, OneHot, UpDown1 Counters 0F 
TMR Counter 10 
TMR, UpDown1 Counters 11 
TMR, OneHot Counters 12 
TMR, OneHot, UpDown1 Counters 13 
TMR, UpDown2 Counters 14 
TMR, UpDown2, UpDown1 Counters 15 
TMR, UpDown 2, OneHot Counters 16 
TMR, UpDown 2, OneHot, UpDown 1 Counters 17 
TMR, FTMR Counters 18 
TMR, FTMR, UpDown 1 Counters 19 
TMR, FTMR,OneHot Counters 1A 
TMR, FTMR, OneHot, UpDown 1 Counters 1B 
TMR, FTMR, UpDown 2 Counters 1C 
TMR, FTMR, UpDown 2, UpDown 1 Counters 1D 
TMR, FTMR, UpDown 2, OneHot Counters 1E 
TMR, FTMR, UpDown 2, OneHot, UpDown 1 
Counters 1F 
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Table 8 - Counter TMR status codes 

Comment 
Counter TMR 

Code 
No Mismatch 00 
UpDown Counter 1 01 
One Hot Counter 10 
UpDown Cunter 2 11 
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Appendix D: BlockRam Code Tables 

Table 9 - BlockRam Error Correction Code Indicators 

Comment ECC Code 
  
Bit Zero Incorrect 11 
Bit One Incorrect 12 
Bit Two Incorrect 13 
Bit Three Incorrect 14 
Bit Four Incorrect 16 
Bit Five Incorrect 17 
Bit Six Incorrect 18 
Bit Seven Incorrect 1A 
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